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I. Introduction. The strong Markov-property of a process X at

a stopping time t,

(SM) Pte -X.I = QT a.s.,

may be split into a conditional independence part,

(CI) P[G'Xe-;.J = P[eraXe'IX ] a.s.

and a homogeneity part,

(H) PL T -'xcIX] = 0 a.s.

(See Section 2 for notation.) However, it is known that condition

(H) alone, for allextended valued stopping times T, implies the

strong Markov property (SM) for all 1. (Cf. Blumenthal and Getoor

(2], Proposition 8.2.)

A related result was obtained as Corollary 2.5 of [5], where it

was shown, in the discrete time case, that recurrence at every

state plus the validity of (H) for every finite stopping time will

force X to be a Markov chain (and then automatically strong Markov).

This can easily be seen directly (as pointed out to me by H. F-llmer

and M. Jacobsen), but it was originally deduced from a general result

in exchangeability, via a characterization of recurrent and locally

homogeneous sequences as mixtures of Markov chains. (In this paper,

mixing will always refer to the associated probability measures.)

fly local h0omojleneity is meant that e OX and o X should

have the same distribution for every pair of stopping times o and T

such that X a and Xr are non-random and equal. Note that this is the

same as condition (H) for all stopping times T with fixed Xr -

Extensions of these results to the continuous time case were atterpted

in Section 4 of L5., and a further discussion was given in [61.

The present work emerged from an attempt to find a unified

approach to these results, and to develop a general theory, linking

the three conditions (SM), (CI) and (H), both in discrete and



continuous time. As it turns out, an appropriate hypothesis

is to assume that (H) should hold a.s. in the set fX rBI, for every

stopping time t such that XreF a.s. Here F is a closed subset of

the state space S, while B is a Borel subset of F, and it is further

assumed that X is recurrent in F, in the sense that

s ' .*-fF, = a.s. (1.1)

For convenience, the above conditions will be labelled H(F,P).

Note that recurrence holds automatically when F=S. Thus H(S,B)

means simply that (H) should hold a.s. on {X,*B} for every finite

stopping time t. As a special case of Theorem 2 below, it will be

seen that X is a strong Markov process, whenever H(S,S) is fulfilled,

without any further recurrence conditions on X. This result (mentioned

already in [62) improves the characterizations of Markov processes

and chains given in [5J. More generally, it will be seen that H(S,B)

for an arbitrary B implies regeneracy in B, in the sense that (SM)

will hold a.s. in {X rBJ for every stopping time T.

The situation becomes more complex when F is a proper subset

of S. In that case we can only prove that X regenerates in a

certain subset Br of R, to be referred to as the regular part. The

regeneracy may fail in the remaining singular part Bs , but Theorem 3

shows that (S11) remains conditionally true in a suitable sense,

given the a-field induced by the shift invariant sets. Indeed, we

shall even prove the stroncer statement that X is a mixture of

processes regenerating in B and we shall give an explicit

expression for the associated transition kernel.

.J To get a proper understanding of these results and their proofs,

it is necessary to look at other ways of characterizing the sets

Br and B s . The original definition is analytical, in terms

of the kernel Q, but Theorem 1 gives alternative descriptions in terms

of the sample path behavior of X. Then both F and B reduce to a

single state s, it turns out that Rs=B=Isj, so in this case X will

N.,
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be conditionally regenerative at s. Since the invariant dr-field

is independent of s, we may con,:lude, in the context of recurrent

processes in countable state spaces, that X is mixed Markov when-

ever H(js} , sj) holds for every state s. This is essentially the

characterization of local homogeneity mentioned above.

It may seem unsatisfactory to have different descriptions of

the behavior in the regular and singular parts of B. In Theorem 4,

it will be shown that (SM) is conditionally true in the entire B,

given some suitable invariant cr-field. Unfortunately, the associated

transition kernel will typically depend on the choice of conditioning

a-field in this case, and there seems to be no natural choice of

the latter. Furthermore, it is no longer clear, in general, whether

X can be obtained as a mixture of regenerative processes.

As for the oraanization of the paper, precise statements of

the four main results described above will be given in the next

section, with the appropriate framework duly specified. The

proofs will then be given in Sections 3-7. Finally, we give in

Section 8 a simple example, designed to illustrate the various

complications which may arise.
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2. Main results. Throughout the paper, we shall consider a

fixed random process X, defined on some complete probability

space (.,;,P). The paths of X are assumed to lie in the space

D=D(R+,S) of right-continuous functions w: R +-- S with left-hand

limits on (O,a). Here S is taken to be a separable metric space,

and for the last two theorems we shall even assume that S is

complete.

The a-field in S is taken to be the Borel field I', while D

is endowed with the d-field Z generated by the one-dimensional

projections 7rt: w --3.wt from D to S. The process X is assumed

to be adapted to some right-continuous filtration {%}jc I, such

that 0 contains all P-null sets of T.

As in Section 1, we shall consider some fixed closed and

recurrent set FCS and some Borel set BcF, and we shall assume

that condition H(F,B) is fulfilled. Here the shift operators at,

t>O, on D are defined by

(9tw)5 = w s t>O weD,ts+t' -

and Q" is assumed to be a normal probability kernel from S to D,

where normal means that

QxweD. w0 =x} = 1, xES. (2.1)

Note that ex. is measurable for every stopping time T, and that

the -recurreyce relation (1.1) defines a measurable event. Standard

facts like these will usually be stated without proofs, if mentioned

at kil, an& we refer to Dellacherie and Meyer [4] for details.

.A basic role in the sequel will be played by the D-set

S-A w:. weB}, n w: wt {wo>uFCi,
t>O

con'sisting of those Paths which start in B and whose excursions

from the starting point lie entirely outside F. In terms of A, we may

now define the regula-and singular parts of B as

--- "--------
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Br = jx B: Qx-A=01, = {x(.B: OxA-l-

Since A =D\A belongs to Souslin , we have At * while B r,B s

where the star indicates universal completion. In particular cases,

such as when F=S, we have AE! and hence Br ,Bscrf, which simplifies

some of the arguments below. Note, however, that A*E: need not be

true in general (cf. Dellacherie [33).

We proceed to state our first main result, which will play a

key role throughout the paper. Here we show that the set B (Br B S )

is thin, in the sense that X. lies a.s. outside that set for every

stopping time T. The sets where X. hits B or B respectively willr s

further be characterized directly in terms of the sample paths

of X, without reference to the kernel Q. Finally we show that Bs

is equivalent, from the point of view of hitting at stopping

times, to a Borel set B' and we describe, in terms of the sample
s

paths of X, the random set

M = jt>0; XteBsi,

which will play such an important role in the subsequent proofs.

For technical reasons, we shall allow the stopping times to

take infinite values. For an appropriate interpretation in that

case, let us introduce an auxiliary coffin state a, and define

X =? and e 'X=d.
00 -THEOREM 1. For every stopping time T, we have

{e9 XCAj = IXTECBs} = {Xr rB\Brl a.s. (2.2)

Moreover, there exists a Borel set BscBs, such that

St>_0: 9t XA }EA) = t t_: X t EBs a.s. (2.3)

Here are some consequences of a technical nature which will be

useful below:



COROLLARY. The random set M is optional. Moreover, M is a.s.

right-closed and either empty or unbounded. Finally, we have for

every stopping time T

X ~EB =-reMy a.s.
LT s -

At this point, one might try to simplify the setting by

redefining 0 on the set B - (B UB'), such as to make QXA=O holdr s'

for all xEB\BL. However, this would lead to new complications,

in general, since the altered version of 0 may not be measurable

with respect to e.

The next result shows that X is reqenerative at visits to B r

If F=S, then X is a.s. absorbed when it first hits B', and the
S

regenerative property extends to the entire B. In the particular

case when even B=S, X is then a strong Markov process. This is

the result alluded to in [6J, and proved for discrete time

already in [5].

THEOREM 2. Condition (SM) holds a.s. in 4XfrB I for every~trf

stopping time T. If F=S, the validity extends to -X TB .

The second statement will be slightly improved below. However,

it is generally impossible to extend the regeneracy of X to the

whole of B, as will be seen from Example 1 in Section 8.

As noted above, X becomes Markov with transition kernel Q,

when B=F=S. Though the original Q need not satisfy the Chapman-

Kolmogorov identity, as required in the standard axiomatic setup,

it can be modified to do so under broad conditions, as shown by

Walsh [7].

For the remaining results, the state space S will be assumed

to be complete, and hence Polish. Then so is D in the Skorohod-

Stone topology, which ensures the existe.,ce of reqular conditional

distributions for X.

%~~ Q J"
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Before stating the next main result, we shall need to introduce
some further notation. Let us first define the hitting time for Bs

z(w) = inf't>O; wteBs;, w*D,

and put =z X. Then is a stopping time, so X, is a random variable,

and we may define the measure

PIX , e (2.4)

and the associated Q-mixture
X

0 oXu (dx = RLO 5

where EJ-;C' denotes P-inteqration over the set C. Introducing the

shift invariant a-field V in D, given by

= IeO*; 8 tlI=I, t 0},

we may next define the conditional distribution QP(./7J as the

QU-a.e. unique probability kernel from (D,J) to (D,Z ), satisfying

iQU[.-IjdQ = QP(,r) I), IeJ.

Apart from the shift operators Ot , we shall also need the

killing operators kt , given for 0_t<*e by

(ktw)s = l s' -ts 5t,

Sk La, s>t.

Note that the mappings kt and 7t make sense even when t is a function

of w. In particular,

7 zW = WoZ(w), weD.

By a( z ) and d(k z ) we shall mean the a-fields in D generated by the

mappings 7z and k respectively. A relation between 0-fields ofz z

the form V':- 4' a.e. m means that 6 lies in the m-completion of 6",

and similarly, (,'=6' a.e. m means that " and ' have the same m-

p" completion.

The process X is said to be conditionally reaenerative in a

certain set, if X is regenerative in the set under almost every

conditional law. Since the set of all stoppinq times is usually



uncountable, this condition is much stronger, at least formally,

than the corresponding property for every fixed stopping time.

We are now ready to give a complete description of the

behavior in B , and to characterize those o1-fields which yield

conditional regeneracy there. In particular, this will enable us to

deterrine precisely when X is regenerative in the entire B.

THEOREM 3. For every stopping time 7, we have

P e X . ,-, X-1'J.] = OP[- iCjv X a.s. in {XeBsj, (2.5)

and X is a.s. conditionally regenerative in Bs , given X- . More

generally, a sub-d-field C-z satisfies

P -Le, X x P te¢ xC.1x,1 X a.s. in XtEBs (2.6)

for all stopping times T, iff

": C.' v o (7Tz ) C Jca(k z ) a.s. P{XE-, o, (2.7)

and in that case the first statement holds with X-I in place of X-I.

COROLLAPY. The process X is regenerative in B iff

X-1 - = ,C(X) a.s. on

or, equivalently, iff

' = d"(1-,0) a.e. Q'.

Note that the last condition holds automatically when F=S,

since in that case QV-a.e. sample path is constant. Thus the last

assertion of Theorem 2 follows from the above corollary.

Our final aim is to extend the conditional regeneracy relation

(2.5) of Theorem 3 from Bs to the entire B. We shall then employ

the notation

u'r X-we T =

~where T is an arbitrary stoppinq time.
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THEOPEM 4. Let the o-field J'C I be such that 7'v cT( 7,0)

a.e. Q. Then

P x'J = T. Jr0 ,7e.X a.s. on {XreBl, (2.8)

for every stopping time T. If J' is further countably generated,

thenQ . can be chosen to be independent of The above

-i
statements remain true with 7' replaced b;"=( z E).

We do not know whether a.s. conditional regeneracy can be

proved here, as in case of Theorem 3. Other difficulties encountered

in Theorem 4 are the possible dependence on 7' of the conditional

transition kernel in (2.8), and further the possible non-existence

of a minimal conditioning c-field V'. The complexity of the general

case is illustrated by Example 1 in Section 8.

We proceed to make some general remarks. First of all, it is

easy to check that the proofs below for continuous time carry over

with obvious changes to the discrete time case. Alternatively, we may

derive the results for discrete time from those in the continuous

case by an embedding argument, where we let the successive

transitions between states of the discrete time process occur at

times given by a homogeneous Poisson process. Note, however, that

some technical simplifications are possible when time is discrete.

In particular, B and B will automatically become Borel sets, sor s

there is no need to introduce the auxiliary set B'. Furthermore,s

the statement of Theorem 4 may now be strenqtheneed to conditional

regeneracy, in the sense discussed above. Apart from this, the

two cases are completely analogous. For the sake of simplicity,

we shall therefore present the main example of Section 8 in a

discrete time version.

For a second remark, it is seen from (2.1) that condition (H)

holds a.s. on fX EB} for a aiven stopping time T, iff
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SX .eBj = E Q 1 w: wt., w0 eB'

Combining this with Theorem 2, we may conclude that the process

X is strong Markov, iff
Xr

q= E Q

for every finite stoppinq time T, The latter condition may be

easier to verify in specific situations.

For a final remark, note that the local homogeneity of L5J was

defined without reference to any specific kernel. In the same vein,

one may try to replace H(F,B) by a weaker condition H'(F,B), statinQ

that X is recurrent in F and satisfies
PTe X-.X Edx] = P Pro Xe.IX dxl, xtB a.e. U r'

for every pair of stopping times c and T, such that X,X reF a.s.

(Here ii denotes the largest measure dominated by both p and

In the special case when F=S, we have the following analog of

Theorem 2:

THEOREM 2'. Condition H'(S,B) implies that (CI) holds a.s. on

CX13B for every stopping time r.

To prove this, one needs to go through the proofs of Theorem 2

and of the first half of Theorem 1, to make sure that the stopping

times reouired to prove the assertions for a fixed T may be

(randomly) selected from some countable family j-. One may then

construct a kernel Q such that (H) holds a.s. in B for each T.,
j

and then proceed as before. The details of the argument are omitted

here.

In the same way, one may prove an analoq of Theorem 2 for

arbitrary F, though the definition of B will now depend on ', in
r

general. As for the last two main results, a stumbling block seems

to be the second half of Theorem 1, whose proof uses stopping times

depending in a :on-constructive manner on the kernel 0. We do not

know how to get around this difficulty.

Z ~ ~
.'8 

A M
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3. Proof of Theorem 1. Our plan is to prove (2.2), first for

stopping times -" with X,,F a.s. and then in general. We shall next

discuss the existence of B' and prove from (2.2) that the two sets

in (2.3) are indistinguishable. From this the Corollary will follow

easily.

PROOF OF (2.2). Fix an arbitrary stopping time T with X EF a.s.

Our first aim is to prove that

IX rEBs} C {G oXeA} C{XrEB\Br} a.s. (3.1)

To see this, conclude from (H) on {XTEBI and from the definitions

of B and B thatr s X z  o = 0

Pt8 TeaEA X r(B r = E[Q A; XCBrJ =EOA; =

and X

Pje.TeXj4A, XrkBs = QX1.c X,*.Bs] = E[0'A c; 0 'A=lj = 0

The a.s. inclusions in (3.1) follow immediately from these relations

and from the definition of A.

Suppose that we can prove the reverse relation

{X, Bs} {e . XeAj a.s. (3.2)

Using (H), (2.1) and the definitions of A and Bs, we then obtain

E[) A; Q X A41]J = FTC)T A; X cB \B PI = r p -~XeA, X EB\Bj
X T  X r

P< Px TB s , , XEB\Bs} = 0,

which shows that QAO a.s. on { 0 }. By the definitions of

Br and B s, we get

{Xr*B\Bs} ( jX 'Brj a.s.,

or for the corresponding differences from tXkB),

X CBs1 D IXTCeB\Br} a.s.

Thus the three events in (3.1) are a.s. eaual, and (2.2) follows.

To complete the proof of (2.2) when Xr F a.s., it remains to

prove (3.2). Let us denote the metric in S by F, and fix an

arbitrary C>O. We shall first need to show that
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PirT-OA, X TB, supl(XzXt); t-[Torj, XteF J <E, (3.3)

for sufficiently small constants 5>0 and larqe stopping times

c>T with X EF a.s. To this aim, note that

sup{ (Xr,Xt) ; t>T, XtEF1 J- on {% X A, X.*BJ

by the definition of A, and conclude that

Pje'rXOA, X *B, sup ?(XvrXt); te[T,TvsJ, Xt(-Fi 3 }

for all sufficiently large s>0 and small J>0. Formula (3.3) follows

fromr this if we replace s by the stopping time a=infft>vs: X. eF},

and it remains to verify that XaeF a.s. But this is obvious by the

recurrence of F and the facts that F is closed while X is right-

continuous.

Returning to the proof of (3.2), we shall introduce a countable

collection of auxiliary stopping times Ti, as follows. First we

partition B into countably many disjoint Borel sets B. with

diameters Bl. S, which is possible by the separability of S. We

then define, for every index j, an associated stopping time

A inf{t* TC(d; P(XTXt)_>, XtCFJ when X i-Bj,

T otherwise.

(Here and below, the infimum of an empty subset of ET,aJ is taken

to be ar.) Note that XjtF a.s. Since IBj)-<J while X is right-

continuous, it is easy to check that

1 J

From the definitions of Tj and A, we further get the relations

19e,XkAl C Je T XeA I a.s., (3.5)

{e~XfA, X eBC} C {x a.s. (3.6)

Applying (H) to the stopping times Tj and using formulas

(3.3)-(3.6), we obtain

"v. " N. %6 N' " ' %



13

A[ ; AC re-XeAJ E[O A ; 8 XA X,,eBJ

E x[Q A ; X B- = Pjex.X.A, XT B jj_ [x oxJ - Jx ,x Jl

D3

= P{9-X#A, XrCB, supi (X ,Xt); te[r,aJ, XteFCeS < .

Since Z was arbitrary, the left-hand side must be zero, so we get

x
je,.-XEA} C 1o AC=0 - {XTe.Bs l a.s.,

which is relation (3.2). This completes the proof of (2.2) under

the condition XTeF a.s.

To extend (2.2) to arbitrary stopping times, let us first

assume that T is a.s. finite. Then (2.2) applies to the stopping

time d=inf t>T: XtCF since X tF a.s., and it will then follow

for T if we intersect by JX eF=iT=cY}. If T is allowed to be

infinite, we may apply (2.4) to the truncated stopping time 'tAn

and then intersect by -,<_n}={T=TAn} to obtain

{8,rXEA, T<n} = tXTCBs, T<nI = tX.CB\Br , Tn} a.s.

From this we obtain (2.2) by letting n-o. 1

We proceed to prove the second statement of Theorem 1. Since

this part will not be needed for Theorem 2, the reader may skip

the proof for the moment, and return to it in connection with

Theorem 3.

As a first step, we shall prove the existence of a Borel set

BsC Bs , such that (2.2) remains true with B replaced by Bs , i.e.5 5

such that
{,- xZAI = Xx B's, as (3.7)

for every stoppin time t.

PROOF OF EXISTENCE OF B'. Our proof will make use of the

measure p introduced in (2.4). However, that definition uses

. .. Yr ,.
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the set BL, so we shall need a direct way of construction. For

each neN we then introduce the stoppinq time 'Tn=inf tn: Xt FJ.,

and define a measure Fn on S by

PnC = p XeA, X ecJ. Ce (3.8)
n n

The seauence {Pnl is increasing and bounded, since the events on

the right of (3.8) are increasing in n, by the definition of A and

the recurrence of F. The measure F may now be defined by

PC = sup PnC, Ce f.
n

Let us now consider an arbitrary stopping time T, and conclude

as above that, for all nQN and Ct ,

je. XeA, Xr*C, C. n} c e c XeA, X .n ECj a.s.

Hence

PT(XeA, XC,*C Tn} Fn C 5' .

Letting n-+oo and using (2.2), we get

P{XtB snC} P XrtEC . C (3.9)

Since B ee there exists some Borel set B'C B satisfying

y(Bs\Bs')=0. Applying (3.9) with C=B 'c, we obtain
-- s s

P{XreBS\B'1 F (B5 \Bs') = 0,

and (3.7) follows by combination with (2.2). 0

To complete the proof of Theorem 1, we have to strenqthen (3.7)

by proving that the two random sets

M1 = tt>0: 9teXtA}, M2 = {t70: XteB;

are indistinguishable. If M I were known at the outset to be optional,

then this would follow directly from the optional section theorem.

But the optionality of M 1 is in fact a rather surprisinq consequence

of our theorem.

PROOF OF (2.3). Write D1 and D2 for the debuts of the two sets

Ml and M We shall first show that M 1 and M 2 are indistinguishable

within the random interval (Dir). Let us then fix an arbitrary
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number r>O, and introduce the stopping time T=infft)r: XtFj. By

the definition of A, we have

T= infjt>r: EtbXeA} on jDl<r}.

Since the right-continuity of X implies that M is right-closed,

(for a detailed argument, see the proof of the Corollary below),

we may conclude that '*XCA on {Dlr}. But then (3.7) yields

X iB s a.s. on {Dl<r}, and it follows by the definition of A that

M1 and M2 are indistinguishable in the random interval [T,#)x {D rj.

Since both sets vanish in Jr,z) by the definition of T, they must

in fact agree a.s. in [r,oo)AfD1r}. Hence they agree a.s. in the

countable union

U ([r,ao) X tDl~r)) = (D,o),
r )Q+

as asserted.

To extend this result to tDIdo), note that D 1 M1.Jjyo, since M

is right-closed. Using the definition of A, we obtain

Xt = XD, teM1  (D I p),

and since M 1 and M 2 agree a.s. on (DIf), we may conclude that

XD s a.s. on jMlrn(DIo) o.

But here the set on the right is equivalent to jD Ioo}, by the

recurrence of F, and it follows that D EM2 u[so} a.s. Thus M and M2

are indeed indistinguishable on [D1 ,00).

It remains to prove that D2.Dl a.s. To this aim, let

M E = M2f n[D 2,D 2 +E) , E0,

and note that ME is optional for each E. The optional section theorem

(cf. (41) then applies and yields the existence, for each 3>0, of a

stopping time T satisfying

[B] c Ma PT=o, D geJt a..

By (3.7) and the definition of MV, we get a.s.

{{r'oo} = {X T4 D 2D+ E] = {eo XErA, r I.D2+EIC (D1 D 2+E-ic}ol



16

and hence

n ,D 2 <}.0} -e Pjc o}+ <. PD]<D2 + E~e+,

Since I was arbitrary, it follows that

tD2 _} C {D1D 2 +4} a.s.,

and since even E was arbitrary, we get DI1 _D2 a.s. on JD 2 -oaJ. It

remains to notice that DI1_D 2 is trivially true on {D 2=0-)- 

PROOF OF THE COROLLARY. The set M is optional, since X is

right-continuous while B' is Borel. The last assertion followss

immediately from (2.2) and (2.3). It remains to prove that M is

a.s. right-closed and either empty or unbounded. By (2.3), it is

equivalent to prove these assertions for the set M'=jt O; etXA}.

Let us then fix an' cl, and let tlt 2,....M'=M'(j) with t nt.

Then XtI=X t2=...=Xt by the definition of A and the right-continuity

of X, and this is the only state in F which is visited after t.
Thus et oXeA, so tEM'. This proves that M' is right-closed.

Let us next fix an wrli, such that M'30 while F is recurrent.

If t0 M', then Xt eB, and this is the only state in F visited

after t0. Thus X must be visited again for arbitrarily large t,

and any such t lies in M' by definition. This proves that M' is

unbounded.

%!xZ

%_
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4._Proof of Theorem 2. Here we shall first prove the strong

Markov property (SM) in Br , when F is an arbitrary closed subset

of S. As before, it will then be useful to consider the case of

stoppinq times T with X F a.s., before we turn to the general

case. Next we shall assume that F=S, and prove in this case that

(SM) remains true in B s . In view of Theorem 1, this will yield

the desired extension to B.

PROOF OF (SM) IN Br . Assume first that T is a stopping time

with XeF a.s. It is required to show that

X
prec Xe'; cJ = ELQ '; CJ (4.1)

for any set Ce l kXBr For convenience, we shall prove instead

that (4.1) holds for any Ce, with

(XrXB\Br} C C C iXreBy. (4.2)

This will prove the original statement, since any set CE7(XeBr}

may be written as a difference

C = (C u.(XreB\Br}) \{XrB\Br}

between sets in the latter class.

As in the preceding proof, we shall apply condition (H) to a

sequence of auxiliary stopping times ... As before, we fix an
J

arbitrary E>O, and choose 4>0 and a.,t such that (3.3) is fulfilled.

We shall also need a countable partition of B into disjoint Borel

sets BJ with Bj-I'. The stopping times recuired in the present

proof are then given by

. finf{te[Tcj: £(X,Xt)>T, XteF} on Cc n{X T Bj,

Ij t or T on C U{X'Bj}.

Recalling the definition of or and the convention about empty sets,

it is seen that X eF a.s., so (H) applies to each T.. Note also
d (.4 3

that, instead of (3.4),



18

{X EB jlC cxeB, suPp?(YT., Xt) ; tC- [,Crj, XtCeFj cJ).. (4.3)

We may now conclude from (11), (3.3), (4.2) (4.3) and the

definition of 1. that

IP eEg. --; C-E [Q; cli (; C11 1 le& -QXT ; X~te-BjI ,C1

j j C.;XJejC1

F [I {9[1 ~X(.I-Q j; X T eBj r Cc P [Xr eB j;C C]

49 & Pi eA, X,B., Isup{?(XTXt) ; tC- 1,oJ, XtEF J

P 9r XOA, X TCB , S up {F(X'r, Xt) ; t E['~r g, X t 4F} < 1 -E.

Since C was arbitrary, the difference on the left must vanish, as

*asserted in (4.1). This proves (104) in B rfor stopping times T' with

X..kF a.s.

we next consider an arbitrary finite stopping time r, and a

set CrE 71{AXTe-Br1.- Putting 6=inf~t> T: Xt EFJ as before, we get

X CyeF a.s., and it is further seen that

C * d-r f. 1{Z=c, X0 .E-B4.l (4.4)

Thus (4.1) holds with 0r in place of 7', and we get in view of (4.4)

P~q&e'e. CJ = nfea,.; cJ d[ . E; CcJ r[

as desired.

For general T*, let again CeTT nX r e-B rl and note that

(cf. C4]), and that moreover

C "tn}-. {XreBr, 'r'n C {Xr, nB}.

Hence (4. 1) applies with T and C replaced by TAn and Cr t T~nj, and

we get
-n -; cl= ro 'r n rq ' x

* ~~Plelxe" 'T4n Cj = P~eTr nDXCE.' ~;c ~ ~,C

= E0[6 rn, cJ.
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Since 7 is f-1inite on C, we obtain (4.1) from this by letting n-+3o.

our proof is then complete. 1

PROOF OF (Sri) IIN Bs W!HEN F=S. If F=S, then

A = [w: wt=w EBJ = "w=c : xeB,

where c x(t)=x, so by Theoren 1 we get for every stopping time 'r

E4. ;X = C~ a.s. on Ix C}.

Hence, a.s. on ix. .EB ip

as desired.
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5. Some auxiliary results. In this section we shall collect

sorme auxiliary results, needed for the proofs of the last two

main theorems. We shall also introduce the stopping times ', i,...

and the associated excursions YIY 2 1 ..., which will later play a

basic role. The only result in this section which may be of some

independent interest is Lemma 5.6 on exchangeable sequences.

Our first aim is to restate the homogeneity condition (H) for

visits to B, in terms of the mixture QV. In the proof, we shall make

use of the optional set M= t>0; Xt Bs , introduced in Section 2.

LEMMA 5.1. Let T be a stopping time satisfying Xr*B s a.s.

on . Then

P ferZ'Xe- 601. QP, (5.1)

and

Tn[ex -l1 7 = Qxe. j]ox a.s. on {e}. (5.2)

PROOF. To prove (5.1), let us introduce the auxiliary stopping

times

'n = inf{t>rA-n: XteF), neN,

and note that Xf -F a.s. for each n. Fence (H) applies to each Tn ,

n
and we get

P{en XC ", X nBs = EQ ; XneBs (5.3)
Tn T n

Now both X EB' and X nB s' imply <w, and on the same set tn=r for
T S ' 5

all sufficiently large n. Letting n-w in (5.3), we thus obtain
Ai

Pje,-XE , .cao P e)rd XE , Xr.eB4

X xT (5.4)
- ; L E

Next conclude from (2.3) that e9,X. A a.s. on j eoJ, and that

moreover =inf{t>0: et.X*A) a.s. Since the latter set is right-

closed, it follows that even e *XeA a.s. on . Using the

definition of A we thus obtain X =X a.s. on { <}, and so, by the

rV

'I- ibvq - J
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* definition of ua,

E[O s soJ E)7Q; Jfoxpdx) = OP~.

Combininq this with (5.4) yields (5.1).

To Prove (5.2), note that coa.s. equals jM unboundedjEx -'

For any T6l with tXcEII c! unbounded], we get by (5.1.)

Pier.; e' XeIl Ple' Xe .I,~oJ QP(.PI) = )' fQ fJ1]dQV'

- l J ~[JY3 dPX'l =£ OP[- 17], X d:P,
I {XeI}

as desired. 13

We proceed to discuss somre Properties of the random set M.

Recall from the Corollary to Theorem 1 that M is a.s. right-closed

and either empty or unbounded. We shall also need some information

about the gaps of M. By a gap we mean an open interval (a,b), such

that (a,b)1M=0 while a,be-M, where M denotes the closure of M. Note

that the gaps of M4 are disjoint.

LEMMA 5.2. For any fixed h>O, the random set M has a.s. either

none or infinitely many gaps >h.

DPQOF. Applyinq Lemna 5.1 to the stopping times

' n = inf ft~n: te1M}i, neZ+,

we get

P{M has gaps ;,-hl = P{ M has gaps > h in [n,po)j

= P fl M has qaps >h in [neoJ
n=O

=P{TM has infinitely many, gaps >h

V Since the event on the right implies the one on the left, the two

must be a.s, equal. Thus the possibility of finitely many gaps >h

is a.s. excluded.0

Combining this result with Theorem 1, it is seen that with
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probability one either M=i¢,w) for some *F0,", or M has infinitely

many gaps greater than some h >0. It is convenient to state a

corresponding fact in terms of suitable invariant sets in D. Let

us then introduce the set-valued function

M(w) = tt>0: wtCBs?, weD,

and define the Cf-sets

16 t>0i w ( D : m- tw= [t,o)},

Ih = C) weD: mecEtw has gaps >h, h:0,
t>0

I h  = 16 uI , h-0; T0 =h-

hO0
In this notation, we have with probability one either M=O or X.I0 *

An important role in the sequel will be played by the stopping

times T0,1,... and processes YIY2,.. defined for fixed h >0 by
' =  T = inft_,n +hi tEM nEN,

0 ' n -n_-1
X (t+rnl) 0<t<T ,

Yn (t)= n - n nEN.

Note that the sample paths of YI,Y 2 ,... lie in the space D,=D(R+,So),

where S is obtained from S by attaching 2 as an isolated point.

Let us write Y for the random element (YIY 2 ,...) of D,. In

the latter space, the discrete shift operators en are given by

n(YI Y2'1 .. ") = (Y2 Y3'"" ")r ' n=

We shall need to construct universally measurable mappings j and

satisfying tX=Y and fvY=e ,X, and commuting in a suitable sense

with the shift operators on D and DO.

Let us then define the functions t0 ,tl,... and Yi'92'''" on D,

in the same way as 7,. ,... and Y' Y 2'''were defined in terms of

X. Moro prre-r ,i ,y, 1Ito

to = z = inf m, d = inf s;-h; sEm],

t = t d, ne'N, (5.5)n n-1i tn
%-%

.. . . . . . .4 . .. - .< , . ., ' - . - < ' -, , ,
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f n= e~ t rk t , niN, (5.6)

and outrf( 1 f~. . All these functions are clearly Z*-measurable.

To construct a mapping in the opposite direction, let

and define for..) L

r n (Y) d'(yl) + .. + d'*(N)" e,

(J(v) Y (t-r), r 1 tr n.,

T~t { ~,t>sup in

LEMM4A 5.3. The above functions are universally measurable and

satisfy

E) en neZ (5.7)
n

e e't. nC-Z .(5.8)

n:= Ern II t +n n

Moreover, there exist universally measurable functions ntfn': I,-O.?+

tQO, such that

eSn t': % e:Toet oin Ih' t>O* (5.9)

PROOF. For every t>O we have

t + d-et = t + infjs>h: stm-9t infJ~s+t0.h+t: s+ttm'

=infis>.h+t: sEr 11

so

zae' +d9 et = _,tO

Putting t=t n-l' we get in particular

Z~e~ = 0 on the set it n <00.
n

More generally, it is seen by induction that

t kCe tn+ t n= t ,~n k,nceZ +. (5.10)

Indeed, assuming (5.10) to be true with k-i instead of k, we get

by (5.5)
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tk:-9t + tn = (tk_1 + dekl )9 t n + t

= t k-l't + tn + dtkl
ntil tt+ttn

n
= t kl+n + dc t kl+n = t k+n ,

as desired. Combining (5.10) with (5.6) yields

k tn =i tk-1 t tn = I  tk-l' 8t tn = l tk+n-I 1 kn
nn

and (5.7) follows.

To prove (5.8), note that

tn-1 + d' =tn , n*N,

and conclude by summation that

r nT = tn - z on {z-coo), neZ+ (5.11)

Assumring that z w and t+zE[tn-1l't n ) wege

( t n(t-r n-l6T ) = ln(t+Z-tn-i )  w(t+z) 8 Gz(t),

= z ,  (5.12)

at least when z-O. But then (5.12) vust be generally true, since

it reduces to a triviality when z=o. Combining (5.12) with (5.7)

and (5.10) yields

E1 cjn = 9tn = e et &tn = 9z9t +t = t
n n

which proves the equality between the extreme members of (5.8). On

the other hand, we may use (5.11) and (5.12) to obtain for z- D

(er jio) e = =
n n n n

which again extends immediately to arbitrary z. Thus the right

equality in (5.8) is also true, and so the proof of (5.8) is

complete.

To prove (5.9) for suitable nt and n', let us first assume that

wtI, and define

T(w) = inf{s>0: Is,s+h]t m(w)$0},



25

nt(.)= infin*Z+: t n > Too +t. t>.

Note that T and n~ are finite and £Z -measurable functions of w on I'~

We shall show that

t n +k = t+ t n0Go+k'. t) kceZ +, t>0. (5.13)

To see this, conclude fron~ the definitions that

tnt= infistP': s >TcP t+t11 t>0.

Hence

tn0C tet = infitr .etf s~-'"Getl
=inf is>0: s+tCTfl, s+t> T40 t+tl

= inf 'uem": u - TG+t. - t = t -t

which nroves (5.13) for k=0. Corrbining this special case with (5.10),

we obtain more generally

t n+k t n t+ k C t n +tn e 0( t k t o n -e

t tn aE)ti@ +tk C ,tn0,tC et= +t n 0 CP +k et

as desired. Using (5.13), we qet for kfY

Ik+n 0 to~t P (( +tk+n &o It )t 0~

t(.+ tt

so (5.9) holds with

n' (w) = n 9tw, t>0.

It retrains to consider the case when we! ;- Let us then define

T'(w) =inf ' s>0: w E3, e~
t- 5 sw w s~

(~w) =inf k (-Z : tk(W) > T I(w

and note that F is finite and Z -measurable. Moreover, w5=-wj for

stNwhile (E tw) =woo for s~t V4,@ t ?tso we get

t

Thus (5.9) holds in this case with
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n t ~(w) F ,W nj(w) = 1l(etw) , t>Q. 1

It is convenient to restate (5.7) and (5.8) in terms of X and Y:

COROLLARY 5.4. For each neZ+, we have identicall~y

E,*X= e vY, (5.14)
nn

q1 9 n t n (5.15)

Our next aim is to relate the shift invariant or-fields in D

and D,' through the mapping ~.in Dj, the invariant df-field is

given by

To stress the dependence of Y,... on h, we shall sometimes write

'h .h..

LEMMA 5.5. For each h'>O we have

,7 -l (5.16)

Moreover, there exists some set J hedsuhta
7 NI=4-1 h', j such tha
7 h ; ~h (Iih

PROOF. Let I+J,-I0 be arbitrary, and put
10 * 0

m=l n=m

Then clearly JeJ. Using Lemma 5.3, the invariance of I and the

finiteness of tilt 21.. on 101, it is further seen that

so

m= 1 n=rr

This proves (5.16).

From (5.16) it follows in particular that I'h lh for sore

i -.To p~rove (5.17), it remains to show that

(f (Jh) C h

Let us then consider an arbitrary set Je' J h" and put I=lf'J. Then
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ICI h' so we need only prove that 1e7. Using Lemma 5.3 and the

invariance of J, we get for any t>O and for n t and n as in (5.9)

1 I= 9 t = lyetl= fEkn 'iToet~Crj = 1(en;,1(-J} ?eT

jc J=I,

as desired. 1

We conclude this section with a general result about conditionally

i.i.d. random sequences in an arbitrary state space S. Let us then

write @ for the shift operator on Soo and 5' for the associated

d-field of shift invariant measurable sets in S0o

LEMM~A 5.6. Let be a random sequence such that

9ef is conditionally i.i.d. and independent of 0, given some C-

field 2.Then this remains true with replaced by ~ ,iff

a. (11,) a.s. P (5.18)

Note that this statement contains a number of known results in

exchangeability theory (cf. Aldous (13).

PROOF. By hypothesis,

PL'e-Io j= (P Lj 1 91j~)0 = ').0 (5.19)

Hence, by the law of large numbers,

1im I =. B a.s.,

so c ()c E a.s., and therefore

P E-g 0 t-1 e 1 71 (P [fie ,1o P- ~ 1 7J~

Thu (5.19) remains true for =Kwith any ay-field C satisfyinaI

(5.18).
Suppose conversely that (5.19) holds withi=C C for some df-

field C.Tly Kolmo'gorov's 0-1 law, wc o~btain for any Tc-f



iT) 1 -: (P L 1 K ) )0 T = or 1 * a . s. ,2

and it fo' ows easily that, a.s.,

Ie zti = z C11

Thus -Ie IJJ1 a.s., so 9-Y-.a.s. P4- 1 .

To derive the upper bound in (5.18), note that (5.19) remains

true with5=~~) f 'C. App~lying the law of large nuribers to

successive blocks of n components, we aet a.s.

and hence also

By a monotone class argument, this extends to

and we get in particular, for any CEC,

1 fcE.C} P[ eC 0, 1 ) PLf eC/ f 0 < -9 17J ir dT( ) 1 e

Thus (Y, - 7 a.s.s76 a.s.P

0A ,
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6. Proof of Theorem 3. The rain idea of the proof is to show

by means of Theorem 2.1 in (51 that the sequence of excursions

YY 2,... is exchangeable and hence conditionally i.i.d. This

yields the conditional form of the strong Markov property at the

random times T Since an arbitrary stopping time in M can be0, 1'*

approximated by times Tn, the general result follows from this by a

continuity argument. Similar arguments were used on several occations

already in L53.

We proceed to the detailed argument, and begin with (2.5).

Here it will be convenient to consider a special case first.

PROOF OF (2.5) WHEN XtIh A.S. Let 9 be the discrete filtration

associated with the stopping times OI7,... above, i.e. n 1 for
n

nZ +, and note that Y is adapted to q. If a is a finite q stopping
time, then 7t is an F stopping time, and moreover XT eB' a.s. since

M is right-closed. Hence

C

by Lemra 5.1, so by Corollary 5.4 we have

independently of cr. We may then conclude from Theorem 2.1 in [51

that Y is exchangeable, and that indeed
L as

?Lgs ' Y * ' 15n ' V] = Vol P[Y(- as

for some raneor nrobabilitv measure V onDa.This extends by a

standard argument to

PLE= a,

for finite ( stopping times a. Noting that

=~ y-I } X-I:rV = YX a.s.

by Lemr-as 5.5 and 5.6, and using Lemma 5.1 and Corollary 5.4, we

hence obtain

• !j
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. - , X P Y Y - V-'r . .

= P[o ex*..x X-] -- QVI L .

This proves (2.5) for stopping times T of the form T .

To extend this to arbitrary stopping times T with X eBs a.s.,Ts
put

Sh = inf T>: nEZ+I,

and note that -, is a.s. of the form .! for some 4 stopping time C.

Thus (2.5) holds with in place of T, and since c h we aet
hh

P [PX7J QPE.17jc1 a.s.h

This clearly remains true for every sufficiently small h>O.

Now -h-*, a.s. as h-O by construction, so we get

PEX(T h+t) X-(r-t) I a.s., tO,

by the right-continuity of paths. Hence the finite-dimensional

distributions of )T 1X converge weakly to those of Sr &I a.s. withTh
respect to P., X-J. On the other hand, these distributions

are a.s. given by QPf./JjoX. Thus both sides of (2.5) have the

same finite-dimensional distributions, and since the latter

determine the whole distribution, (2.5) is generally true.

Let us next consider the case when T is an arbitrary finite

stopping time. We then define d=inf{t)_T: XteBs , and note that cr

assis a stopping time with X CB; a.s., since M is a.s. right-closed.

Hence (2.5) holds with T replaced by a, and since I T [ =T}=

( fC=T), the original relation must be a.s. true on {d=q. it

remains to notice that {X eBs} C{o=r-j by the definition of cr.

We finally assume that T is an arbitrary stopping time. Then

(2.5) holds with T replaced by An for any fixed nell, and since

n n_ the oricinal relation is then a.s. true on

X-B', '.n'.. The assertion for 7 now follows by letting n-e.a= ~s -
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PROOF OF (2.5) IN THE GENERAL CASE. From the assertions in

Lemma 5.1, we get immediately the corresponding statements for

the conditional probabilities P[.jXeIh] and QP[.IIh]=QV(.- Ih)/Q1I h ,

provided that P{XCIh} >. Proceeding as in the special case above,

it is then seen that

p e -Xe~j _, X-I, XeIhj= QL'17Ih]iX a.s. on {XE-Bs, X'Ih},

which is equivalent to (2.5) on the set {XGIh}. Since h is

arbitrary, this extends immediately to {XeI 0}. It remains to

notice that {XEBs}c XtI0 a.s., by Lemma 5.2. 1

PROOF OF THE CONDITIONAL REGENERACY IN Bs . We shall prove the

5

stronger statement that, for almost every conditional distribution

p'=PE.-lX], there exists some probability measure Q' on D, such

that

P'ecX , ] = C' on [X,(.Bs }, a.s. P' (6.1)

for every stopping time T. By (2.5), this holds with Q'=QF['. ,JX

for every fixed stopping time T. The point is that the exceptional

P-null set where (6.1) -ray fail can be taken to be independent of 7.

To see this, note that (6.1) holds simultaneously for the

countable collection of stopping times '0,k= and

nk = inf-{tnl,k+k - 1 n,keN,

outside a fixed P-null set. For any P' and 0' with this property,

we may now proceed as above to extend (6.1) in steps, first to

stopping times of the form 'r, with o random, then to stoppinq

times . with X~eB s a.s. P', next to all finite stopping times,

and finally to the general case. 13
-l

From (2.5) follows the same relation with X- in place of

X-] , for arbitrary ( satisfying (2.7), and (2.6) then follows

by appyinq (2.5) to the stoppinq times T and .To complete the
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proof of Theorem 3, it thus remains to show that (2.6) for all

stopping times Z implies (2.7).

PROOF OF (2.7) FROM (2.6). Fix h O, define Y=(YIY 2...) as

before, and put Y0=k CX. From (2.6) it is seen that YIY2,.

are conditionally i.i.d. and independent of Y0 ' a.s. on cw and

given the a-field X-v t(X.). By Lemma 5.6, this implies

- c x-': c(Xg) C - d(Y0) a.s. on jr. .. (0.2)

In particular we may take (=, and then we get in conjunction

with Lemma 5.5 and Theorem 1

T -x 6 C X (Xj = X 1 J a.s. on

Thus Y -'=x a.s. on } and (2.7) follows by substitutinq

X- for Y- d in (6.2).

PROOF OF THE COROLLARY. From Theorems 2 and 3 it is seen that

X is regenerative in B iff

7 cr(%i) c zv(k) a.s. PjXE- (6.3)

Now is clearly shift invariant on the set where e eA while m isz z

unbounded, and the latter set has full measure, since

PrE? cXeA, M is unbounded =,

by Theorem 1 and its corollary. Thus

a(77z) C a.s. PtXe- ,  -ft,

so (6.3) reduces to

7= (7,z) a.s. P{xe., C-.

Using the definition of "., we may rewrite this in the form

j= d(7T0 ) a.s. P let Xt , " = 91 . 0

p0



33

7. Proof of-Theorem 4. Our plan is first to derive (2.8) from

the three precedinq theorems. our next step is to construct a '.-

independent version of Q (.r hiro,7'1 from a product measurable

version of [.' ,where the latter is known to exist when ''

is countably generated. To prove the final assertion, we shall

show that J" is equivalent to some aY-field satisfying the

previous requirements, in the sense of yielding the same conditional

distributions in (2.8) .

PRooF oF (2. 8) . Our first aim is to prove that (2.8) holds

a.s. on jX*Br for any stopping timre Z. To see this, fix a stopping

time T, let .E-j' and Cef* r BB be arbitrary, and conclude from the

invariance of I and the definitions of 0 and 0 11r 1-7.-,TeJ 'that

P eTX- xeI, X I cl P lerIx* I MI i71 c IC Q'(rI.-.1r 0 C)

f JPL 1 0 J'J 1(I '% *0 1C) doP

=. £L0 f./7017 " e ..X; XCII XCJ

Hence

T) er&Xe, Xe I x?.j = F.I r 10 1 . ,X *IJXr] a. s. on tX *B .

Since (SM) holds in B rby Theorem 2, it follows that

r0

Thus we get, a.s. on JX-B rly

P fe,2!. , x-' =' -1 F 17 , X

as asserted.

By Theorem 1. it remains to prove (2.8) a.s. on tX CBsj, and

by Theorem 3 it then suffices to show that

J'r I 7] I X= OP[- 17J X a.s. on {X1 eBt (7.1)

'To see this, note that X. s ons~ 5 .Hec nB
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and therefore n'--QP on 0  . Thus we get, by the hypothesis on j'

Pu- -and 7,0 0 - 7 a .e. Q on
and (7.1) follows by the definitions of 7 and Q .

For the next step of our nroof, we shall need the following

standard result (cf. L4]):

LEMMA 7.1. Let Ps be a probability kernel from a measurable

space (S,f) into some Polish space (T,T), and let 7' be a countably

generated sub-o'-field of -. Then PsL. 17T,3 (t) has a regular and

-4-,-'-measurable version.

We nay now prove the second statement of the theorem.

PROOF OF THE r-INDEPENDFNCE. If 7' is countably generated,

then Lemma 7.1 yields the existence of a regular and product

measurable version of the conditional probabilities 0 •[ fTJ

Given any such version, we shall prove that

[- o,7'j (%",) = Q '[-7' (W) a.e. ", (7.2)

for every stopping time t. Since the riqht-hand side is a(0)v 7'-

measurable, a T-independent version of 0 f. r E-17 may then be

defined by the eauality in (7.2).

To prove (7.2) , note first that F( f)=(E)f for any random

measure and measurable function f>0 on the same space. Using

this fact, alona with the definitions of 0Pr and QLo!v"' and

the normality of Q', we get for arbitrary IC7' and Cel
QPT(-l Xr ]C
Q T(.,Ito-1o C) = F Q (. It' 0C)= ELQXr(."I); X. (C]

= r [ft. / 7.1 dO ; XeCl

w0  XT
-=[. -1 (w)Q (dw)

In01

-.. li
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-~ ( 'W) Q*(dw),

0 C

as desired. a

To Prove the last statement of the theorem, let us introduce the

space M(D,) of probability measures on D?, and let.R be the a-field

in M(D?) generated by the mappings m--mC, m*M(D.), for arbitrary

064. We shall need another standard fact:

LEMMA 7.2. The a-field .M in M(DO) is countably generated.

PROOF. Note that 90 is the Borel d-field in Dp generated by the

Skorohod-Stone topology. Similarly,,M is the Borel d-field in

M(D?) generated by the topology of weak convergence for probability

measures on Dd. Since S. is Polish, so is D. and hence also M(D,). In

particular, .44 is then generated by any countable base in M(Dj). 1

PROOF OF THE LAST STATEMENT. Fix positive numbers hn 40, and

write

1 n n-l

where the sets Ih' h>O, are defined as in Section 5. Let Vn be

the random probability measure V of Section 6 corresponding to

h=hn , and conclude from the law of large numbers that Vn has a

Yl -measurable version. Since moreover Y = X-_ on {XeJ
~h h -mauabe-
by Lemna 5.5, there exists an Z//t-measurable mapping mn: n

M(D), such that Vn=mn:X a.s. on (XeJn}. Let ' be the a-field

in D generated by the mappings ml,m2 ,...

By construction we have 7' C 7", and from Lemma 7.2 it

follows that I' is countablv qenerated. By Lemma 5.6 it is furthor

seen that X-I '=X-1 on each set {XeJn}, so we get

(C X) -1 = x-l' = x-17 = (eX) -l a.s. on (7.3)
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and hence J'=If a.e. QF* Thus T' fulfills the hypotheses of the

theorem, so (2.8) must hold with some IT-independent version of

Q -F , J
To complete the proof, it suffices to show that

PLer~x'E -' X-1 7J = PLxe* a.s.

and

0 PoP 1 C" I'7 "I a.e. 0' on

in the sense that any version on the right is also a version on

the left. Since 7y"c7', it is then enouah to show that

X- 7= x 1" a.s. (7.4)

an' ill a.e. 0Q P on S. (7.5)

Here (7.4) follows from (7.3) and from the fact that 14=-ol is a.s.

an atom of both 6-fields. Given (7.4), we get as before

(e~.X) 2' X- 27' =X (0qd 'X) 7" a.s. on

which implies (7.5).0
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8.Examples. The main purpose of the present section is to

illustrate the results of Section 2 by a simple example, exhibiting

most of the features of the general case. Here we are choosing the

time scale to be discrete, for convenience, but it is easy to

construct an analogous example in continuous time, by letting the

transitions between states occur at times given by a homogeneous

Poisson process.

Example 1. Let S=-0,1,...,8 , and let tl consist of the

following six "paths" from Z+ to S:

--01 71717.., 4;3=0383838..., L.;=0555...,

C2=0272727..., Lv0484848 •.. , 6=0666..

Let 7 be the discrete d-field on fl, and let , I be the

0' 1'.
filtration generated by the identity map X=(X 0 ,Xl,...) on 12.
Note that X while =r .=t. On a we introduce the

probability measure P, assigning the same probability 1/6 to all
! paths.

Usina the fact that stopping times with respect to 11ni are

either identically zero or strictly positive, one can easily show

- ~ 0that H(F,B) is true with F=i0,5,6,7,8 and B=10,7,81. Here Q =P,

while Q7 assigns probability 1/2 to each one of 02 1 and "22
Q8

and similarly for Q.Thus B r= t0I while Bs=i7,8j , and it is

easily seen that X regenerates in B but not in B . This illustrates

the statements of Theorems 1 and 2.

Turning to the statements of Theorem 3, note that OP gives

mass 1/4 to each of the paths 2,J . Since these are

separated by invariant sets, it follows that QP[°1 f7j(w) degenerates
-iJ

at 0 4 for j=l,...,4. Since moreover X- = in the present case,2 3
it is seen that P[, jx-lr] (.i) degenerates at w. for j=l,...,4.

Thus (2.5) holds as asserted. However, the two equivalent conditions
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of the Corollary fail in the present case, since d(X()t({< } is

the dT-field generated by the partition (jj'-..2 }' -j' -4})' while

X- 1 7 o} is the one generated by (.i},...,{, 4 .).

Most interesting in the present example is perhaps to look at

the statements'of Theorem 4. Since S is finite, we can always choose

O w , . . . , 2 w)
Q L (w) = Q (w), "1 "6 2 ' '

regardless of the nature of J'. In particular, (2.8) holds with

Q as above for 7'=, but also for P' equal to, say,

1= d( 1 3 ,1 2 4) or =(I14,I23)

where I.. denotes the set of paths visiting the set {i,j} infinitely
1J

often. For the latter, Q i7E. ,I] and Q ! ',T] are a.s. degenerate

as before, but Qo[.17! is non-degenerate for j=1,2, and differs3

for the two cases. In fact, it is easily verified that Q0[WiJg ]

=1/2 for i,jej3,3 or i,je{2,41, and similarly for 7 with 3 and 4

interchanged. Note also that both 7i and are locally minimal,

in the sense that, whenever a d-field 2'c 21 is such that

' Va(,T0)='Y a.e. QU, then P'=7 a.e. Q. This illustrates the

non-uniaueness of kernel and non-existence of a minimal conditioning

a-field in the statement of Theorem 4. G

Ve conclude this section by correcting an error in 151 related

to the present work. As part of Theorem 4.5 in [5], it was claimed

that a real valued, continuous, recurrent, and locally homogeneous

process X on P+ is conditionally strong Markov. However, the proof

in [5] is false in general, unless we exclude the possibility of

paths with constant pieces. (Our mistake was to add up uncountably

many null-sets, corresponding to the possible states of constancy.)

The following counterexample shows that the difficulties are

intrinsic rather than merely technical.
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Example 2. Consider a Brownian motion 1, and an independent

homogeneous Poisson process with jur'mps at TI 2' ... Put T0=0

and define

x t .=  B(((t-k)vT)A + ) - B( , t>O.
k=O k k+l k

Thus X consists of diffusion parts of independent exponential

lengths, alternating with constant parts of length 1.

Since the levels of constancy B(T ),B(" 2 ),... have diffuse

distributions, it is easily seen that X regenerates at every

fixed state. But X is not Markov or conditionally Markov, even

in the weak sense, since every fixed time t.-O belongs with

positive probability to some interval of constancy (Tk+k-l,Tk+k). 0

5k

ji
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